Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
JAMA Netw Open ; 5(12): e2247704, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2172229

ABSTRACT

Importance: Real-world evidence of SARS-CoV-2 transmission is needed to understand the prevalence of infection in the Japanese population. Objective: To conduct sentinel screening of the Japanese population to determine the prevalence of SARS-CoV-2 infection in asymptomatic individuals, with complementary analysis for symptomatic patients as reported by active epidemiologic surveillance used by the government. Design, Setting, and Participants: This cross-sectional study of a sentinel screening program investigated approximately 1 million asymptomatic individuals with polymerase chain reaction (PCR) testing for SARS-CoV-2 infection between February 22 and December 8, 2021. Participants included children, students, employed adults, and older individuals, as well as volunteers to broadly reflect the general Japanese population in the 14 prefectures of Japan that declared a state of emergency. Saliva samples and a cycle threshold (Ct) value of approximately 40 as standard in Japan were used. Polymerase chain reaction testing for symptomatic patients was separately done by public health authorities, and the results were obtained from the Ministry of Health, Labour, and Welfare of Japan to complement data on asymptomatic infections from the present study. Main Outcomes and Measures: Temporal trends in positivity and prevalence (including surges of different variants) and demographic associations (eg, age, geographic location, and vaccination status) were assessed. Results: The positive rate of SARS-CoV-2 infection in 1 082 976 asymptomatic individuals (52.08% males; mean [SD] age 39.4 [15.7] years) was 0.03% (95% CI, 0.02%-0.05%) during periods without surges and a maximum of 0.33% (95% CI, 0.25%-0.43%) during peak surges at the Japanese standard Ct value of approximately 40; however, the positive rate would have been 10-fold less at a Ct value of 25 as used elsewhere in the world (eg, UK). There was an increase in patients with a positive PCR test result with a Ct value of 25 or 30 preceding surges in infection and hotspots of asymptomatic infections. Conclusions and Relevance: In this cross-sectional study of asymptomatic SARS-CoV-2 infection in the general population of Japan in 2021, as investigated by sentinel surveillance, a low rate of infection was seen in the Japanese population compared with reported levels elsewhere in the world. This finding provides real-world data on the state of infection in Japan.


Subject(s)
COVID-19 , Male , Adult , Child , Humans , Female , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Asymptomatic Infections/epidemiology , Prevalence , Japan/epidemiology , Cross-Sectional Studies
2.
Front Aging ; 2: 719342, 2021.
Article in English | MEDLINE | ID: covidwho-1933922

ABSTRACT

Age is a major risk factor for COVID-19 severity, and T cells play a central role in anti-SARS-CoV-2 immunity. Because SARS-CoV-2-cross-reactive T cells have been detected in unexposed individuals, we investigated the age-related differences in pre-existing SARS-CoV-2-reactive T cells. SARS-CoV-2-reactive CD4+ T cells from young and elderly individuals were mainly detected in the central memory fraction and exhibited similar functionalities and numbers. Naïve-phenotype SARS-CoV-2-reactive CD8+ T cell populations decreased markedly in the elderly, while those with terminally differentiated and senescent phenotypes increased. Furthermore, senescent SARS-CoV-2-reactive CD8+ T cell populations were higher in cytomegalovirus seropositive young individuals compared to seronegative ones. Our findings suggest that age-related differences in pre-existing SARS-CoV-2-reactive CD8+ T cells may explain the poor outcomes in elderly patients and that cytomegalovirus infection is a potential factor affecting CD8+ T cell immunity against SARS-CoV-2. Thus, this study provides insights for developing effective therapeutic and vaccination strategies for the elderly.

3.
Mol Ther Nucleic Acids ; 26: 1107-1114, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1472122

ABSTRACT

It has been reported that many receptors and proteases are required for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Although angiotensin-converting enzyme 2 (ACE2) is the most important of these receptors, little is known about the contribution of other genes. In this study, we examined the roles of neuropilin-1, basigin, transmembrane serine proteases (TMPRSSs), and cathepsins (CTSs) in SARS-CoV-2 infection using the CRISPR interference system and ACE2-expressing human induced pluripotent stem (iPS) cells. Double knockdown of TMPRSS2 and cathepsin B (CTSB) reduced the viral load to 0.036% ± 0.021%. Consistently, the combination of the CTPB inhibitor CA-074 methyl ester and the TMPRSS2 inhibitor camostat reduced the viral load to 0.0078% ± 0.0057%. This result was confirmed using four SARS-CoV-2 variants (B.1.3, B.1.1.7, B.1.351, and B.1.1.248). The simultaneous use of these two drugs reduced viral load to less than 0.01% in both female and male iPS cells. These findings suggest that compounds targeting TMPRSS2 and CTSB exhibit highly efficient antiviral effects independent of gender and SARS-CoV-2 variant.

4.
Regen Ther ; 18: 321-333, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1401824

ABSTRACT

INTRODUCTION: Our group has conducted extensive basic and preclinical studies of the use of human induced pluripotent cell (iPSC)-derived neural stem/progenitor cell (hiPSC-NS/PC) grafts in models of spinal cord injury (SCI). Evidence from animal experiments suggests this approach is safe and effective. We are preparing to initiate a first-in-human clinical study of hiPSC-NS/PC transplantation in subacute SCI. SETTING: NS/PCs were prepared at a Good Manufacturing Practice-grade cell processing facility at Osaka National Hospital using a clinical-grade integration-free hiPSC line established by the iPSC Stock Project organized by the Kyoto University Center for iPS Cell Research and Application. After performing all quality checks, the long-term safety and efficacy of cells were confirmed using immunodeficient mouse models. METHODS: The forthcoming clinical study uses an open-label, single-arm design. The initial follow-up period is 1 year. The primary objective is to assess the safety of hiPSC-NS/PC transplantation in patients with subacute SCI. The secondary objective is to obtain preliminary evidence of its impact on neurological function and quality-of-life outcomes. Four patients with C3/4-Th10 level, complete subacute (within 24 days post-injury) SCI will be recruited. After obtaining consent, cryopreserved cells will be thawed and prepared following a multi-step process including treatment with a γ-secretase inhibitor to promote cell differentiation. A total of 2 × 106 cells will be transplanted into the injured spinal cord parenchyma 14-28 days post-injury. Patients will also receive transient immunosuppression. This study protocol has been reviewed and approved by the Certified Committee for Regenerative Medicine and the Japanese Ministry of Health, Labor and Welfare (University Hospital Medical Information Network Clinical Trials Registry [UMIN-CTR] number, UMIN000035074; Japan Registry of Clinical Trials [jRCT] number, jRCTa031190228). DISCUSSION/CONCLUSION: We plan to start recruiting a patient as soon as the COVID-19 epidemic subsides. The primary focus of this clinical study is safety, and the number of transplanted cells may be too low to confirm efficacy. After confirming safety, a dose-escalation study is planned.

SELECTION OF CITATIONS
SEARCH DETAIL